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Abstract

Clustering partitions a collection of objects into groups
called clusters, such that similar objects fall into the same
group. Similarity between objects is defined by a distance
function satisfying the triangle inequality; this distance
function along with the collection of objects describes a dis-
tance space. In a distance space, the only operation possi-
ble on data objects is the computation of distance between
them. All scalable algorithms in the literature assume a spe-
cial type of distance space, namely ak-dimensional vector
space, which allows vector operations on objects.

We present two scalable algorithms designed for cluster-
ing very large datasets in distance spaces. Our first algo-
rithm BUBBLE is, to our knowledge, the first scalable clus-
tering algorithm for data in a distance space. Our second
algorithm BUBBLE-FM improves upon BUBBLE by reduc-
ing the number of calls to the distance function, which may
be computationally very expensive. Both algorithms make
only a single scan over the database while producing high
clustering quality. In a detailed experimental evaluation,
we study both algorithms in terms of scalability and quality
of clustering. We also show results of applying the algo-
rithms to a real-life dataset.

1. Introduction
Data clustering is an important data mining problem

[1, 8, 9, 10, 12, 17, 21, 26]. The goal of clustering is to
partition a collection of objects into groups, calledclusters,
such that “similar” objects fall into the same group. Simi-
larity between objects is captured by a distance function.

In this paper, we consider the problem of clustering large
datasets in adistance spacein which the only operation pos-
sible on data objects is the computation of a distance func-
tion that satisfies the triangle inequality. In contrast, objects
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in a coordinate spacecan be represented as vectors. The
vector representation allows various vector operations, e.g.,
addition and subtraction of vectors, to form condensed rep-
resentations of clusters and to reduce the time and space
requirements of the clustering problem [4, 26]. These oper-
ations are not possible in a distance space thus making the
problem much harder.1

The distance function associated with a distance space
can be computationally very expensive [5], and may dom-
inate the overall resource requirements. For example, con-
sider the domain of strings where the distance between two
strings is theedit distance.2 Computing the edit distance
between two strings of lengthsm andn requiresO(mn)
comparisons between characters. In contrast, computing the
Euclidean distance between twon-dimensional vectors in a
coordinate space requires justO(n) operations. Most algo-
rithms in the literature have paid little attention to this par-
ticular issue when devising clustering algorithms for data in
a distance space.

In this work, we first abstract out the essential features
of the BIRCH clustering algorithm [26] into theBIRCH�

framework for scalable clustering algorithms. We then in-
stantiate BIRCH� resulting in two new scalable clustering
algorithms for distance spaces: BUBBLE and BUBBLE-
FM.

The remainder of the paper is organized as follows. In
Section 2, we discuss related work on clustering and some
of our initial approaches. In Section 3, we present the
BIRCH� framework for fast, scalable, incremental clus-
tering algorithms. In Sections 4 and 5, we instantiate the
framework for data in a distance space resulting in our al-
gorithms BUBBLE and BUBBLE-FM. Section 6 evaluates
the performance of BUBBLE and BUBBLE-FM on syn-
thetic datasets. We discuss an application of BUBBLE-FM

1A distance space is also referred to as anarbitrary metric space. We
use the termdistance spaceto emphasize that only distance computations
are possible between objects. We call ann-dimensional space acoordinate
spaceto emphasize that vector operations like centroid computation, sum,
and difference of vectors are possible.

2The edit distance between two strings is the number of simple edit
operations required to transform one string into the other.



to a real-life dataset in Section 7 and conclude in Section 8.
We assume that the reader is familiar with the definitions

of the following standard terms: metric space,Lp norm of a
vector, radius, and centroid of a set of points in a coordinate
space. (See the full paper [16] for the definitions.)

2. Related Work and Initial Approaches

In this section, we discuss related work on clustering,
and three important issues that arise when clustering data
in a distance space vis-a-vis clustering data in a coordinate
space.

Data clustering has been extensively studied in the
Statistics [20], Machine Learning [12, 13], and Pattern
Recognition literature [6, 7]. These algorithms assume that
all the data fits into main memory, and typically have run-
ning times super-linear in the size of the dataset. Therefore,
they do not scale to large databases.

Recently, clustering has received attention as an impor-
tant data mining problem [8, 9, 10, 17, 21, 26]. CLARANS
[21] is a medoid-based method which is more efficient than
earlier medoid-based algorithms [18], but has two draw-
backs: it assumes that all objects fit in main memory, and
the result is very sensitive to the input order [26]. Tech-
niques to improve CLARANS’s ability to deal with disk-
resident datasets by focussing only on relevant parts of the
database usingR�-trees were also proposed [9, 10]. But
these techniques depend onR�-trees which can only in-
dex vectors in a coordinate space. DBSCAN [8] uses a
density-based notion of clusters to discover clusters of ar-
bitrary shapes. Since DBSCAN relies on theR�-Tree for
speed and scalability in its nearest neighbor search queries,
it cannot cluster data in a distance space. BIRCH [26] was
designed to cluster large datasets ofn-dimensional vectors
using a limited amount of main memory. But the algorithm
relies heavily on vector operations, which are defined only
in coordinate spaces. CURE [17] is a sampling-based hier-
archical clustering algorithm that is able to discover clusters
of arbitrary shapes. However, it relies on vector operations
and therefore cannot cluster data in a distance space.

Three important issues arise when clustering data in a
distance space versus data in a coordinate space. First, the
concept of a centroid is not defined. Second, the distance
function could potentially be computationally very expen-
sive as discussed in Section 1. Third, the domain-specific
nature of clustering applications places requirements that
are tough to be met by just one algorithm.

Many clustering algorithms [4, 17, 26] rely on vector
operations, e.g., the calculation of the centroid, to repre-
sent clusters and to improve computation time. Such algo-
rithms cannot cluster data in a distance space. Thus one ap-
proach is to map all objects into ak-dimensional coordinate
space while preserving distances between pairs of objects
and then cluster the resulting vectors.

Multidimensional scaling(MDS) is a technique for
distance-preserving transformations [25]. The input to a
MDS method is a setSin of N objects, a distance func-
tion d, and an integerk; the output is a setSout of N k-
dimensional image vectors in ak-dimensional coordinate
space (also called theimage space), one image vector for
each object, such that the distance between any two objects
is equal (or very close) to the distance between their respec-
tive image vectors. MDS algorithms do not scale to large
datasets for two reasons. First, they assume that all objects
fit in main memory. Second, most MDS algorithms pro-
posed in the literature compute distances between all pos-
sible pairs of input objects as a first step thus having com-
plexity at leastO(N2) [19]. Recently, Lin et al. developed
a scalable MDS method called FastMap [11]. FastMap pre-
serves distances approximately in the image space while re-
quiring only a fixed number of scans over the data. There-
fore, one possible approach for clustering data in a distance
space is to map allN objects into a coordinate space us-
ing FastMap, and then cluster the resultant vectors using a
scalable clustering algorithm for data in a coordinate space.
We call this approach theMap-Firstoption and empirically
evaluate it in Section 6.2. Our experiments show that the
quality of clustering thus obtained is not good.

Applications of clustering are domain-specific and we
believe that a single algorithm will not serve all require-
ments. A pre-clustering phase, to obtain a data-dependent
summarization of large amounts of data into sub-clusters,
was shown to be very effective in making more complex
data analysis feasible [4, 24, 26]. Therefore, we take the
approach of developing apre-clusteringalgorithm that re-
turns condensed representations of sub-clusters. A domain-
specific clustering method can further analyze the sub-
clusters output by our algorithm.

3. BIRCH�

In this section, we present theBIRCH� framework which
generalizes the notion of a cluster feature (CF) and a CF-
tree, the two building blocks of the BIRCH algorithm [26].
In the BIRCH� family of algorithms, objects are read from
the database sequentially and inserted into incrementally
evolving clusters which are represented bygeneralized clus-
ter features (CF�s). A new object read from the database is
inserted into the closest cluster, an operation, which poten-
tially requires an examination of all existing CF�s. There-
fore BIRCH� organizes all clusters in an in-memory index,
a height-balanced tree, called aCF�-tree. For a new ob-
ject, the search for an appropriate cluster now requires time
logarithmic in the number of clusters as opposed to a linear
scan.

In the remainder of this section, we abstractly state the
components of the BIRCH� framework. Instantiations of
these components generate concrete clustering algorithms.



3.1. Generalized Cluster Feature

Any clustering algorithm needs a representation for the
clusters detected in the data. The naive representation uses
all objects in a cluster. However, since a cluster corresponds
to a dense region of objects, the set of objects can be treated
collectively through a summarized representation. We will
call such a condensed, summarized representation of a clus-
ter itsgeneralized cluster feature (CF�).

Since the entire dataset usually does not fit in main mem-
ory, we cannot examine all objects simultaneously to com-
pute CF�s of clusters. Therefore, we incrementally evolve
clusters and their CF�s, i.e., objects are scanned sequen-
tially and the set of clusters is updated to assimilate new
objects. Intuitively, at any stage, the next object is inserted
into the cluster “closest” to it as long as the insertion does
not deteriorate the “quality” of the cluster. (Both concepts
are explained later.) The CF� is then updated to reflect the
insertion. Since objects in a cluster are not kept in main
memory, CF�s should meet the following requirements.

� Incremental updatability whenever a new object is in-
serted into the cluster.

� Sufficiency to compute distances between clusters,
and quality metrics (like radius) of a cluster.

CF�s are efficient for two reasons. First, they occupy
much less space than the naive representation. Second, cal-
culation of inter-cluster and intra-cluster measurements us-
ing the CF�s is much faster than calculations involving all
objects in clusters.

3.2. CF�-Tree

In this section, we describe the structure and functional-
ity of a CF�-tree.

A CF�-tree is a height-balanced tree structure similar to
theR�-tree [3]. The number of nodes in the CF�-tree is
bounded by a pre-specified numberM . Nodes in a CF�-
tree are classified intoleafandnon-leafnodes according to
their position in the tree. Each non-leaf node contains at
mostB entries of the form (CF �

i ,childi), i 2 f1; : : : ; Bg,
wherechildi is a pointer to theith child node, and CF�i is
the CF� of the set of objects summarized by the sub-tree
rooted at theith child. A leaf node contains at mostB en-
tries, each of the form [CF�i ], i 2 f1; : : : ; Bg; each leaf
entry is the CF� of a cluster. Each cluster at the leaf level
satisfies athreshold requirementT , which controls its tight-
ness or quality.

The purpose of the CF�-tree is to direct a new objectO
to the cluster closest to it. The functionality of non-leaf en-
tries and leaf entries in the CF�-tree is different: non-leaf
entries exist to “guide” new objects to appropriate leaf clus-
ters, whereas leaf entries represent the dynamically evolv-
ing clusters. For a new objectO, at each non-leaf node on

the downward path, the non-leaf entry “closest” toO is se-
lected to traverse downwards. Intuitively, directingO to the
child node of the closest non-leaf entry is similar to identi-
fying the most promising region and zooming into it for a
more thorough examination. The downward traversal con-
tinues till O reaches a leaf node. WhenO reaches a leaf
nodeL, it is inserted into the clusterC in L closest toO if
the threshold requirementT is not violated due to the inser-
tion. Otherwise,O forms a new cluster inL. If L does not
have enough space for the new cluster, it is split into two
leaf nodes and the entries inL redistributed: the set of leaf
entries inL is divided into two groups such that each group
consists of “similar” entries. A new entry for the new leaf
node is created at its parent. In general, all nodes on the
path from the root toL may split. We omit the details of the
insertion of an object into the CF�-tree because it is similar
to that of BIRCH [26].

During the data scan, existing clusters are updated and
new clusters are formed. The number of nodes in the CF�-
tree may increase beyondM before the data scan is com-
plete due to the formation of many new clusters. Then
it is necessary to reduce the space occupied by the CF�-
tree which can be done by reducing the number of clus-
ters it maintains. The reduction in the number of clusters is
achieved by merging close clusters to form bigger clusters.
BIRCH� merges clusters by increasing the threshold value
T associated with the leaf clusters and re-inserting them into
a new tree. The re-insertion of a leaf cluster into the new
tree merely inserts its CF�; all objects in leaf clusters are
treated collectively. Thus a new, smaller CF�-tree is built.
After all the old leaf entries have been inserted into the new
tree, the data scan resumes from the point of interruption.

Note that the CF�-tree insertion algorithm requiresdis-
tancemeasures between the “inserted entries” and node en-
tries to select the closest entry at each level. Since insertions
are of two types: insertion of a single object, and that of a
leaf cluster, the BIRCH� framework requires distance mea-
sures to be instantiated between a CF� and an object, and
between two CF�s (or clusters).

In summary, CF�s, their incremental maintenance, the
distance measures, and the threshold requirement are the
components of the BIRCH� framework, which have to be
instantiated to derive a concrete clustering algorithm.

4. BUBBLE
In this section, we instantiate BIRCH� for data in a dis-

tance space resulting in our first algorithm called BUB-
BLE. Recall that CF�s at leaf and non-leaf nodes differ in
their functionality. The former incrementally maintain in-
formation about the output clusters, whereas the latter are
used to direct new objects to appropriate leaf clusters. Sec-
tions 4.1 and 4.2 describe the information in a CF� (and then
incremental maintenance) at the leaf and non-leaf levels.



4.1. CF�s at the leaf level
4.1.1 Summary statistics at the leaf level

For each cluster discovered by the algorithm, we return the
following information (which is used in further processing):
the number of objects in the cluster, a centrally located ob-
ject in it and its radius. Since a distance space, in general,
does not support creation of new objects using operations
on a set of objects, we assign an actual object in the cluster
as the cluster center. We define theclustroid Ô of a set of
objectsO which is the generalization of the centroid to a
distance space.3 We now introduce theRowSumof an ob-
jectO with respect to a set of objectsO, and the concept
of an image spaceIS(O) of a set of objectsO in a distance
space. Informally, the image space of a set of objects is a
coordinate space containing animage vectorfor each object
such that the distance between any two image vectors is the
same as the distance between the corresponding objects.

In the remainder of this section, we use(S; d) to denote a
distance space whereS is the domain of all possible objects
andd : S � S 7! R is a distance function.

Definition 4.1 Let O = fO1; : : : ; Ong be a set of ob-
jects in a distance space(S; d). The RowSumof an ob-

jectO 2 O is defined asRowSum(O)
def
=
Pn

j=1 d
2(O;Oj).

The clustroid Ô is defined as the object̂O 2 O such that
8O 2 O : RowSum(Ô) � RowSum(O).

Definition 4.2 Let O = fO1; : : : ; Ong be a set of objects
in a distance space(S; d). Let f : O 7! Rk be a func-
tion. We callf anRk-distance-preserving transformation
if 8i; j 2 f1; : : : ; ng : d(Oi; Oj) = jjf(Oi) � f(Oj)jj
wherejjX�Y jj is the Euclidean distance betweenX andY
in Rk . We callRk the image spaceof O underf (denoted
ISf (O)). For an objectO 2 O, we callf(O) theimage vec-

tor ofO underf . We definef(O)
def
= ff(O1); : : : ; f(On)g.

The existence of a distance-preserving transformation is
guaranteed by the following lemma.

Lemma 4.1 [19] Let O be a set of objects in a distance
space(S; d). Then there exists a positive integerk (k <

jOj) and a functionf : O 7! Rk such thatf is anRk-
distance-preserving transformation.

For example, three objectsx; y; z with the inter-object dis-
tance distribution[d(x; y) = 3; d(y; z) = 4; d(z; x) =

3ThemedoidOk of a set of objectsO is sometimes used as a cluster
center [18]. It is defined as the objectOm 2O that minimizes the average
dissimilarity to all objects inO (i.e.,

P
n

i=1
d(Oi;O) is minimum when

O = Om). But, it is not possible to motivate the heuristic maintenance|
a la clustroid|of the medoid. However, we expect similar heuristics to
work even for the medoid.

5] can be mapped to vectors(0; 0); (3; 0); (0; 4) in the 2-
dimensional Euclidean space. This is one of many possible
mappings.

The following lemma shows that under anyRk-distance-
preserving transformationf , the clustroid ofO is the object
O 2 O whose image vectorf(O) is closest to the centroid
of the set of image vectorsf(O). Thus, the clustroid is the
generalization of the centroid to distance spaces. Following
the generalization of the centroid, we generalize the defi-
nitions of the radius of a cluster, and the distance between
clusters to distance spaces.

Lemma 4.2 LetO = fO1; : : : ; Ong be a set of objects in a
distance space(S; d) with clustroidÔ and letf : O 7! Rk

be aRk-distance-preserving transformation. LetO be the
centroid off(O). Then the following holds:

8O 2 O : jjf(Ô)�Ojj � jjf(O) �Ojj

Definition 4.3 Let O = fO1; : : : ; Ong be a set of objects
in a distance space(S; d) with clustroidÔ. Theradiusr(O)

of O is defined asr(O)
def
=

qP
n

i=1
d2(Oi;Ô)

n
.

Definition 4.4 We define two different inter-cluster dis-
tance metrics between cluster features. LetO1 andO2

be two clusters consisting of objectsfO11; : : : ; O1n1g and
fO21; : : : ; O2n2g. Let their clustroids beÔ1 and Ô2

respectively. We define theclustroid distanceD0 as

D0(O1;O2)
def
= d(Ô1; Ô2) and theaverage inter-cluster

distanceD2 asD2(O1;O2)
def
= (

P
n1

i=1

P
n2

j=1
d2(O1i;O2j)

n1n2
)
1
2 .

Both BUBBLE and BUBBLE-FM useD0 as the distance
metric between leaf level clusters, and as the threshold
requirementT , i.e., a new objectOnew is inserted into
a clusterO with clustroid Ô only if D0(O; fOnewg) =
d(Ô; Onew) � T . (The use forD2 is explained later.)

4.1.2 Incremental maintenance of leaf-level CF�s
In this section, we describe the incremental maintenance of
CF�s at the leaf levels of the CF�-tree. Since the sets of
objects we are concerned with in this section are clusters,
we useC (instead ofO) to denote a set of objects.

The incremental maintenance of the number of objects
in a clusterC is trivial. So we concentrate next on the
incremental maintenance of the clustroid̂C. Recall that
for a clusterC, Ĉ is the object inC with the minimum
RowSumvalue. As long as we are able to keep all the ob-
jects ofC in main memory, we can maintain̂C incrementally
under insertions by updating theRowSumvalues of all ob-
jectsO 2 C and then selecting the object with minimum
RowSumvalue as the clustroid. But this strategy requires
all objects inC in main memory, which is not a viable op-
tion for large datasets. Since exact maintenance is not pos-
sible, we develop a heuristic strategy which works well in



practice while significantly reducing main memory require-
ments. We classify insertions in clusters into two types,
Type I and Type II, and motivate heuristics for each type
of insertion. A Type I insertion is the insertion of a single
object or, equivalently, a cluster containing only one object.
Each object in the dataset causes a Type I insertion when it
is read from the data file, making it the most common type
of insertion. A Type II insertion is the insertion of a cluster
containing more than one object. Type II insertions occur
only when the CF�-tree is being rebuilt. (See Section 3.)
Type I Insertions: In our heuristics, we make the follow-
ing approximation: under any distance-preserving transfor-
mationf into a coordinate space, the image vector of the
clustroid is the centroid of the set of all image vectors, i.e.,
f(Ĉ) = f(C). From Lemma 4.2, we know that this is the
bestpossible approximation. In addition to the approxima-
tion, our heuristic is motivated by the following two obser-
vations.
Observation 1: Consider the insertion of a new object
Onew into a clusterC = fO1; : : : ; Ong and assume that
only a subsetR � C is kept in main memory. Letf : C [
fOnewg 7! Rk be aRk-distance-preserving transforma-

tion fromC [ fOnewg intoRk , and letf(C) =
P

n

i=1
f(Oi)

n

be the centroid off(C). Then,RowSum(Onew)

=

nX
j=1

d2(Onew ; Oj) =

nX
j=1

(f(Onew)� f(Oj))
2

=

nX
j=1

(f(Oj)� f(C))2 + n(f(C)� f(Onew))
2

� nr2(C) + nd2(Ĉ; Onew)

Thus, we can calculateRowSum(Onew) approximately us-
ing only Ĉ and significantly reduce the main memory re-
quirements.
Observation 2: Let C = fO1; : : : ; Ong be a leaf cluster
in the CF�-tree andOnew an object which is inserted into
C. Let Ĉ and Ĉ� be the clustroids ofC andC [ fOnewg
respectively. LetD0 be the distance metric between leaf
clusters andT the threshold requirement of the CF�-tree
underD0. Then

d(Ĉ; Ĉ�) � �, where� =
T

(n+ 1)
:

An implication of Observation 2 is that as long as we
keep a setR � C of objects consisting of all objects in
C within a distance of� from Ĉ, we know thatĈ� 2 R.
However, when the clustroid changes due to the insertion of
Onew, we have to updateR to consist of all objects within�
of Ĉ�. Since we cannot assume that all objects in the dataset
fit in main memory, we have to retrieve objects inC from the
disk. Repeated retrieval of objects from the disk, whenever

a clustroid changes, is expensive. Fortunately (from Obser-
vation 2), ifn is large then the new set of objects within�
of Ĉ� is almost the same as the old setR becausêC� is very
close toĈ.

Observations 1 and 2 motivate the following heuris-
tic maintenance of the clustroid. As long asjCj is small
(smaller than a constantp), we keep all the objects ofC in
main memory and compute the new clustroid exactly. If
jCj is large (larger thanp), we invoke Observation 2 and
maintain a subset ofC of sizep. Thesep objects have the
lowestRowSumvalues inC and hence are closest tôC. If
the RowSumvalue ofOnew is less than the highest of the
p values, say that ofOp, thenOnew replacesOp in R. Our
experiments confirm that this heuristic works very well in
practice.
Type II Insertions: Let C1 = fO11; : : : ; O1n1 g and
C2 = fO21; : : : ; O2n2 g be two clusters being merged.
Let f be a distance-preserving transformation ofC1 [ C2
into Rk . Let Xij be the image vector in IS(C1 [ C2)
of objectOij underf . Let X1 (X2) be the centroid of
fX1i; : : : ; X1n1g (fX2i; : : : ; X2n2g). Let Ĉ1; Ĉ2 be their
clustroids, andr(C1); r(C2) be their radii. LetĈ� be the
clustroid ofC1 [ C2.

The new centroidX of f(C1 [ C2) lies on the line join-
ing X1 andX2; its exact location on the line depends on
the values ofn1 andn2. SinceD0 is used as the threshold
requirement for insertions, the distance betweenX andX1

is bounded as shown below:

(X�X1)
2 =

n22(X1 �X2)
2

(n1 + n2)2
�
n22d

2(Ĉ1; Ĉ2)

(n1 + n2)2
<

n22T

(n1 + n2)2

The following two assumptions motivate the heuristic
maintenance of the clustroid under Type II insertions.
(i) C1 andC2 are non-overlapping but very close to each
other. SinceC1 and C2 are being merged, the threshold
criterion is satisfied implying thatC1 andC2 are close to
each other. We expect the two clusters to be almost non-
overlapping because they were two distinct clusters in the
old CF�-tree.
(ii) n1 � n2. Due to lack of any prior information about
the clusters, we assume that the objects are uniformly dis-
tributed in the merged cluster. Therefore, the values ofn1
andn2 are close to each other in Type II insertions.

For these two reasons, we expect the new clustroidĈ�

to be midway between̂C1 andĈ2, which corresponds to the
periphery of either cluster. Therefore we maintain a few
objects (p in number) on the periphery of each cluster in its
CF�. Because they are the farthest objects from the clus-
troid, they have the highestRowSumvalues in their respec-
tive clusters.

Thus we overall maintain2�p objects for each leaf cluster
C, which we call therepresentative objectsof C; the value
2p is called therepresentation numberof C. Storing the



representative objects enables the approximate incremental
maintenance of the clustroid. The incremental maintenance
of the radius ofC is similar to that ofRowSumvalues; de-
tails are given in the full paper [16].

Summarizing, we maintain the following information in
the CF� of a leaf clusterC: (i) the number of objects inC,
(ii) the clustroid ofC, (iii) 2 � p representative objects, (iv)
theRowSumvalues of the representative objects, and (v) the
radius of the cluster. All these statistics are incrementally
maintainable|as described above|as the cluster evolves.

4.2. CF�s at Non-leaf Level

In this section, we instantiate the cluster features at non-
leaf levels of the BIRCH� framework and describe their in-
cremental maintenance.

4.2.1 Sample Objects

In the BIRCH� framework, the functionality of a CF� at
a non-leaf entry is to guide a new object to the sub-tree
which contains its prospective cluster. Therefore, the clus-
ter feature of theith non-leaf entry NLi of a non-leaf node
NL summarizes the distribution of all clusters in the subtree
rooted at NLi. In Algorithm BUBBLE, this summary, the
CF�, is represented by a set of objects; we call these ob-
jects thesample objectsS(NLi) of NLi and the union of all
sample objects at all the entries the sample objects S(NL) of
NL.

We now describe the procedure for selecting the sam-
ple objects. Letchild1; : : : ;childk be the child nodes at
NL with n1; : : : ; nk entries respectively. Let S(NLi) de-
note the set of sample objects collected fromchildi and as-
sociated with NLi. S(NL) is the union of sample objects
at all entries of NL. The number of sample objects to be
collected at any non-leaf node is upper bounded by a con-
stant called thesample size (SS). The numberjS(NLi)j con-

tributed bychildi is MAX(

�
ni�SSP
k

j=1
nj

�
; 1). The restric-

tion that each child node have at least one representative in
S(NL) is placed so that the distribution of the sample ob-
jects is representative of all its children, and is also neces-
sary to define distance measures between a newly inserted
object and a non-leaf cluster. Ifchildi is a leaf node, then
the sample objects S(NLi) are randomly picked from all the
clustroids of the leaf clusters atchildi. Otherwise, they are
randomly picked fromchildi’s sample objects S(childi).

4.2.2 Updates to Sample Objects

The CF�-tree evolves gradually as new objects are inserted
into it. The accuracy of the summary distribution captured
by sample objects at a non-leaf entry depends on how re-
cently the sample objects were gathered. The periodicity of
updates to these samples, and when these updates are ac-
tually triggered, affects the currency of the samples. Each

time we update the sample objects we incur a certain cost.
Thus we have to strike a balance between the cost of updat-
ing the sample objects and their currency.

Because a split atchildi of NL causes redistribution of
its entries betweenchildi and the new nodechildk+1, we
have to update samples S(NLi) and S(NLk+1) at entries NLi
and NLk+1 of the parent (we actually create samples for the
new entry NLk+1). However, to reflect changes in the dis-
tributions at all children nodes we update the sample objects
at all entries of NL whenever one of its children splits.

4.2.3 Distance measures at non-leaf levels
Let Onew be a new object inserted into the CF�-tree.
The distancebetweenOnew and NLi is defined to be
D2(fOnewg;S(NLi)). SinceD2(fOnewg; ;) is meaning-
less, we ensure that each non-leaf entry has at least one
sample object from its child during the selection of sample
objects. Let Li represent theith leaf entry of a leaf nodeL.
The distance betweenC and Li is defined to be the clustroid
distanceD0(C;Li).

The instantiation of distance measures completes the in-
stantiation of BIRCH� deriving BUBBLE. We omit the the
cost analysis of BUBBLE because it is similar to that of
BIRCH.

5. BUBBLE-FM
While inserting a new objectOnew , BUBBLE computes

distances betweenOnew and all the sample objects at each
non-leaf node on its downward path from the root to a leaf
node. The distance functiond may be computationally very
expensive (e.g., the edit distance on strings). We address
this issue in our second algorithm BUBBLE-FM|which
improves upon BUBBLE by reducing the number of in-
vocations ofd|using FastMap [11]. We first give a brief
overview of FastMap and then describe BUBBLE-FM.

5.1. Overview of FastMap

Given a setO ofN objects, a distance functiond, and an
integerk, FastMap quickly (in time linear inN ) computes
N vectors (calledimage vectors), one for each object, in a
k-dimensional Euclidean image space such that the distance
between two image vectors is close to the distance between
the corresponding two objects. Thus, FastMap is an “ap-
proximate”Rk-distance-preserving transformation. Each
of the k axes is defined by the line joining two objects.4

The2k objects are calledpivot objects. The space defined
by thek axes is thefastmapped image spaceISfm(O) of
O. The number of calls tod made by FastMap to mapN
objects is3Nkc, wherec is a parameter (typically set to 1
or 2).

An important feature of FastMap that we use in
BUBBLE-FM is its fastincremental mappingability. Given

4See Lin et. al. for details [11].



a new objectOnew , FastMap projects it onto thek coordi-
nate axes of ISfm(O) to compute ak-dimensional vector
for Onew in ISfm(O) with just 2k calls tod. Distance be-
tweenOnew and any objectO 2 O can now be measured
through the Euclidean distance between their image vectors.

5.2. Description of BUBBLE-FM

BUBBLE-FM differs from BUBBLE only in its usage
of sample objects at a non-leaf node. In BUBBLE-FM, we
first map|using FastMap|the set of all sample objects at a
non-leaf node into an “approximate” image space. We then
use the image space to measure distances between an in-
coming object and the CF�s. Since CF�s at non-leaf entries
function merely as guides to appropriate children nodes, an
approximate image space is sufficient. We now describe the
construction of the image space and its usage in detail.

Consider a non-leaf node NL. Whenever S(NL) is up-
dated, we use FastMap to map S(NL) into ak-dimensional
coordinate space ISfm(NL); k is called theimage dimen-
sionalityof NL. FastMap returns a vector for each object in
S(NL). The centroid of the image vectors of S(NLi) is then
used as the centroid of the cluster represented by NLi while
defining distance metrics.

Let fm:S(NL)7!ISfm(NL) be the distance preserv-
ing transformation associated with FastMap that maps
each sample objects 2 S(NL) to a k-dimensional vec-
tor fm(s) 2 ISfm(NL). Let S(NLi) be the centroid
of the set of image vectors of S(NLi), i.e., S(NLi) =P

s2S(NLi)
fm(s)

jS(NLi)j
.

The non-leaf CF� in BUBBLE-FM consists of (1) S(NLi)
and (2)S(NLi). In addition, we maintain the image vectors
of the2k pivot objects returned by FastMap.

The2k pivot objects define the axes of the k-dimensional
image space constructed by FastMap. LetOnew be a new
object. Using FastMap, we incrementally mapOnew to
Vnew 2 ISfm(NL). We define the distance betweenOnew

and NLi to be the Euclidean distance betweenVnew and
S(NLi). Formally,

D(Onew ; S(NLi))
def
= jjVnew � S(NLi)jj

Similarly, the distance between two non-leaf entries NLi

and NLj is defined to bejjS(NLi)� S(NLj)jj. Whenever
jS(NL)j � 2k, BUBBLE-FM measures distances at NL in
the distance space, as in BUBBLE.

5.2.1 An alternative at the leaf level

We do not use FastMap at the leaf levels of the CF�-tree for
the following reasons.

1. Suppose FastMap were used at the leaf levels
also. The approximate image space constructed by

FastMap does not accurately reflect the relative dis-
tances between clustroids; the inaccuracy causes er-
roneous insertions of objects into clusters deteriorat-
ing the clustering quality. Similar errors at non-leaf
levels merely cause new entries to be redirected to
wrong leaf nodes where they will form new clusters.
Therefore, the impact of these errors is on the mainte-
nance costs of the CF�-tree, but not on the clustering
quality, and hence are not so severe.

2. If ISfm(L) has to be maintained accurately un-
der new insertions then it should be reconstructed
whenever any clustroid in the leaf nodeL changes.
In this case, the overhead of repeatedly invoking
FastMap offsets the gains due to measuring distances
in ISfm(L).

5.2.2 Image dimensionality and other parameters

The image dimensionalities of non-leaf nodes can be dif-
ferent because the sample objects at each non-leaf node are
mapped into independent image spaces. The problem of
finding the right dimensionality of the image space has been
studied well [19]. We set the image dimensionalities of all
non-leaf nodes to the same value; any technique used to find
the right image dimensionality can be incorporated easily
into the mapping algorithm.

Our experience with BUBBLE and BUBBLE-FM on
several datasets showed that the results are not very sensi-
tive to small deviations in the values of the parameters: the
representation number and the sample size. We found that
a value of 10 for the representation number works well for
several datasets including those used for the experimental
study in Section 6. An appropriate value for the sample size
depends on the branching factorBF of the CF�-tree. We
observed that a value of5�BF works well in practice.



6. Performance Evaluation
In this section, we evaluate BUBBLE and BUBBLE-

FM on synthetic datasets. Our studies show that BUB-
BLE and BUBBLE-FM are scalable high quality clustering
algorithms.5

6.1. Datasets and Evaluation Methodology
To compare with the Map-First option, we use two

datasets DS1 and DS2. Both DS1 and DS2 have 100000
2-dimensional points distributed in 100 clusters [26]. How-
ever, the cluster centers in DS1 are uniformly distributed on
a 2-dimensional grid; in DS2, the cluster centers are dis-
tributed on a sine wave. These two datasets are also used
to visually observe the clusters produced by BUBBLE and
BUBBLE-FM.

We also generated k-dimensional datasets as described
by Agrawal et al. [1]. Thek-dimensional box[0; 10]k is di-
vided into2k cells by halving the range[0; 10] over each
dimension. A cluster center is randomly placed in each
of K cells chosen randomly from the2k cells, whereK
is the number of clusters in the dataset. In each cluster,
N
K

points are distributed uniformly within a radius ran-
domly picked from[0:5; 1:0]. A dataset containingN k-
dimensional points andK clusters is denoted DSkd.Kc.N .
Even though these datasets consist ofk-dimensional vec-
tors wedo notexploit the operations specific to coordinate
spaces, and treat the vectors in the dataset merely as ob-
jects. The distance between any two objects is returned by
the Euclidean distance function.

We now describe the evaluation methodology. The
clustroids of the sub-clusters returned by BUBBLE and
BUBBLE-FM are further clustered using ahierarchical
clustering algorithm [20] to obtain the required number
of clusters. To minimize the effect of hierarchical clus-
tering on the final results, the amount of memory allo-
cated to the algorithm was adjusted so that the number of
sub-clusters returned by BUBBLE or BUBBLE-FM is very
close (not exceeding the actual number of clusters by more
than 5%) to the actual number of clusters in the synthetic
dataset. Whenever the final cluster is formed by merging
sub-clusters, the clustroid of the final cluster is the centroid
of the clustroids of sub-clusters merged. Other parameters
to the algorithm, thesample size (SS), the branching fac-
tor (B), and the representation number (2 � p) are fixed at
75, 15, and 10 respectively (unless otherwise stated) as they
were found to result in good clustering quality. The image
dimensionality for BUBBLE-FM is set to be equal to the di-
mensionality of the data. The datasetD is scanned a second

5The quality of the result from BIRCH was shown to be independent of
the input order [26]. Since, BUBBLE and BUBBLE-FM are instantiations
of the BIRCH� framework which is abstracted out from BIRCH, we do
not present more results on order-independence here.

time to associate each objectO 2 D with a cluster whose
representative object is closest toO.

We introduce some notation before describing the evalu-
ation metrics. LetA1; : : : ; AK be the actual clusters in the
dataset andC1; : : : ; CK be the set of clusters discovered by
BUBBLE or BUBBLE-FM. LetAi (Ci) be the centroid of
clusterAi (Ci). Let Ĉi be the clustroid ofCi. Letn(C) de-
note the number of points in the clusterC. We use the fol-
lowing metrics, some of which are traditionally used in the
Statistics and the Pattern Recognition communities [6, 7],
to evaluate the clustering quality and speed.

� Thedistortion(
PK

j=1

P
X2Cj

(X �Cj)
2) of a set of

clusters indicates the tightness of the clusters.

� Theclustroid quality(CQ =
jjAi�Ĉj jj

K
) is the average

distance between the actual centroid of a clusterAi

and the clustroidĈj that is closest toAi.

� Thenumber of calls tod (NCD)and the time taken by
the algorithm indicate the cost of the algorithm. NCD
is useful to extrapolate the performance for computa-
tionally expensive distance functions.

6.2. Comparison with the Map-First option
We mapped DS1, DS2, and DS20d.50c.100K into an ap-

propriate k-dimensional space (k = 2 for DS1, DS2, and
20 for DS20d.50c.100K) using FastMap, and then used
BIRCH to cluster the resulting k-dimensional vectors.

The clustroids of clusters obtained from BUBBLE and
BUBBLE-FM on DS2 are shown in Figures 1 and 2 respec-
tively, and the centroids of clusters obtained from BIRCH
are shown in Figure 3. From the distortion values (Table 1),
we see that the quality of clusters obtained by BUBBLE or
BUBBLE-FM is clearly better than the Map-First option.

Dataset Map-First BUBBLE BUBBLE-FM
DS1 195146 129798 122544
DS2 1147830 125093 125094

DS20d.50c.100K 2.214 *106 21127.5 21127.5

Table 1. Comparison with the Map-First option

6.3. Quality of Clustering
In this section, we use the dataset DS20d.50c.100K. To

place the results in the proper perspective, we mention that
the average distance between the centroid of each cluster
Ai and anactual pointin the dataset closest toAi is 0.212.
Hence the clustroid quality (CQ) cannot be less than 0.212.
From Table 2, we observe that theCQvalues are close to the

Algorithm CQ Actual Computed
Distortion Distortion

BUBBLE 0.289 21127.4 21127.5
BUBBLE-FM 0.294 21127.4 21127.5

Table 2. Clustering Quality
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minimum possible value (0.212), and the distortion values
match almost exactly. Also, we observed that all the points
except a few (less than 5) were placed in the appropriate
clusters.

6.4. Scalability
To study scalability characteristics with respect to the

number of points in the dataset, we fixed the number of clus-
ters at 50 and varied the number of data points from 50000
to 500000 (i.e., DS20d.50c.*).

Figures 4 and 5 plot the time and NCD values for BUB-
BLE and BUBBLE-FM as the number of points is in-
creased. We make the following observations. (i) Both al-
gorithms scale linearly with the number of points, which
is as expected. (ii) BUBBLE consistently outperforms
BUBBLE-FM. This is due to the overhead of FastMap in
BUBBLE-FM. (The distance function in the fastmapped
space as well as the original space is the Euclidean distance
function.) However, the constant difference between their
running times suggests that the overhead due to the use of
FastMap remains constant even though the number of points
increases. The difference is constant because the overhead
due to FastMap is incurred only when the nodes in the CF�-
tree split. Once the distribution of clusters is captured the
nodes do not split that often any more. (iii) As expected,
BUBBLE-FM has smaller NCD values. Since the overhead
due to the use of FastMap remains constant, as the num-
ber of points is increased the difference between the NCD
values increases.

To study scalability with respect to the number of clus-
ters, we varied the number of clusters between 50 and 250

while keeping the number of points constant at 200000. The
results are shown in Figure 6. The plot of time versus num-
ber of clusters is almost linear.6

7. Data Cleaning Application
When different bibliographic databases are integrated,

different conventions for recording bibliographic items such
as author names and affiliations cause problems. Users fa-
miliar with one set of conventions will expect their usual
forms to retrieve relevant information from the entire col-
lection when searching. Therefore, a necessary part of the
integration is the creation of a jointauthority file[2, 15] in
which classes of equivalent strings are maintained. These
equivalent classes can be assigned a canonical form. The
process of reconciling variant string forms ultimately re-
quires domain knowledge and inevitably a human in the
loop, but it can be significantly speeded up by first achieving
a rough clustering using a metric such as the edit distance.
Grouping closely related entries into initial clusters that act
asrepresentative stringshas two benefits: (1) Early aggre-
gation acts as a “sorting” step that lets us use more aggres-
sive strategies in later stages with less risk of erroneously
separating closely related strings. (2) If an error is made
in the placement of a representative, only that representa-
tive need be moved to a new location. Also, even the small
reduction in the data size is valuable, given the cost of the
subsequent detailed analysis involving a domain expert.7

Applying edit distance techniques to obtain such a “first

6NCD versus number of clusters is in the full paper [16].
7Examples and more details are given in the full paper.



pass” clustering is quite expensive, however, and we there-
fore applied BUBBLE-FM to this problem. We view this
application as a form of data cleaning because a large num-
ber of closely related strings differing from each other by
omissions, additions, and transposition of characters and
words, are placed together in a single cluster. Moreover, it
is preparatory to more detailed domain specific analysis in-
volving a domain expert. We compared BUBBLE-FM with
some other clustering approaches [14, 15], which userela-
tive edit distance (RED). Our results are very promising and
indicate that BUBBLE-FM achieves high quality in much
less time.

We used BUBBLE-FM on a real-life datasetRDS of
about 150,000 strings (representing 13,884 different vari-
ants) to determine the behavior of BUBBLE-FM. Table 3
shows our results on the datasetRDS. A string is said to
bemisplacedif it is placed in the wrong cluster. Since we
know the exact set of clusters, we can count the number of
misplaced strings. We first note that BUBBLE-FM is much
faster than RED. Moreover, more than 50% of the time is
spent in the second phase where each string in the dataset is
associated with a cluster. Second, parameters in BUBBLE-
FM can be set according to the tolerance onmisclassifica-
tion error. If the tolerance is low then BUBBLE-FM returns
a much larger number of clusters than RED but the misclas-
sification is much lower too. If the tolerance is high, then it
returns a lower number of clusters with higher misclassifi-
cation error.

Algorithm # of # of misplaced Time
clusters strings (in hrs)

RED (run 1) 10161 69 45
BUBBLE-FM (run 1) 10078 897 7.5
BUBBLE-FM (run 2) 12385 20 7

Table 3. Results on the dataset RDS

8. Conclusions
In this paper, we studied the problem of clustering large

datasets in arbitrary metric spaces. The main contributions
of this paper are:

1. We introduced the BIRCH� framework for fast scal-
able incremental pre-clustering algorithms and in-
stantiated BUBBLE and BUBBLE-FM for clustering
data in a distance space.

2. We introduced the concept of image space to general-
ize the definitions of summary statistics like centroid,
radius to distance spaces.

3. We showed how to reduce the number of calls to an
expensive distance function by using FastMap with-
out deteriorating the clustering quality.
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