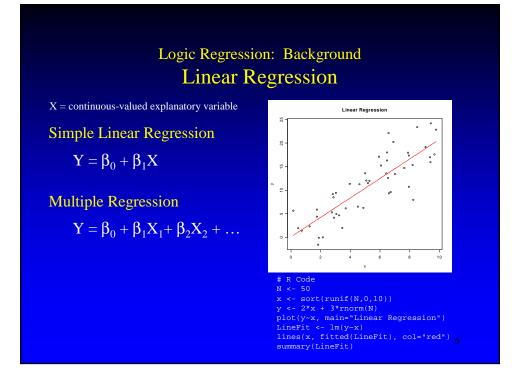



Logic Regression: Biological Motivation Cyclic Gene Study



Problem: Understand four families of genes and how they bind in the upstream regulatory region. "Bind" and "Don't Bind" can be interpreted as binary variables. *Combinatorial effects should be considered*.

Logic Regression: Biological Motivation Regulatory Motif Finding by Logic Regression U.C. Berkeley Division of **Biostatistics Working Paper** Series Paper 145 Year 2004 Regulatory Motif Finding by Logic Regression Mark J. van der Laan[†] Sunduz Keles^{*} Chris Vulpe[‡] Vol. Strat. ICS001, pages 2701. 2811 abt 15, 1095/hg/ts/tstratego/t-f000 Regulatory motif finding by logic regression Strickiz Kelog^{2, 1}, Mark J. van det Laser² and Chris Vulge² ² Obtains of Hardwindow and ²Feddeland Sciences & Installing, University of Cederan, Defensy, CA 980201, USA Product to Maximitar 2.209, notation March 20, 2001, exception Mar 22, 2001 Advance Access publication $M_{22}\Omega^{*}, 2001$

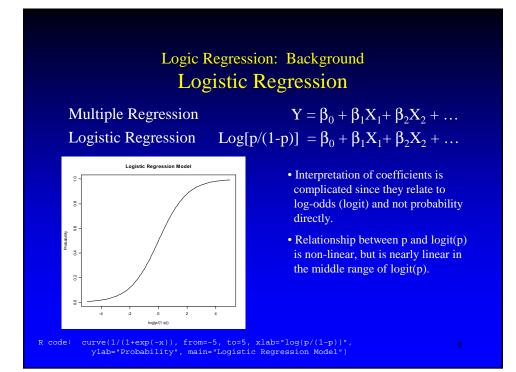
Logic Regression: Background Regression

- Linear Regression
- Logistic Regression
- Linear Discriminant Analysis

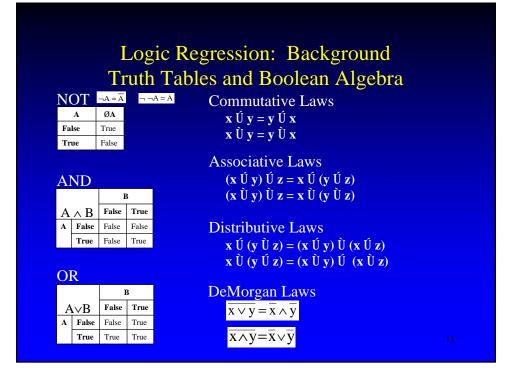
Logic Regression: Background Linear Regression Formalities

E = expected response

Mean

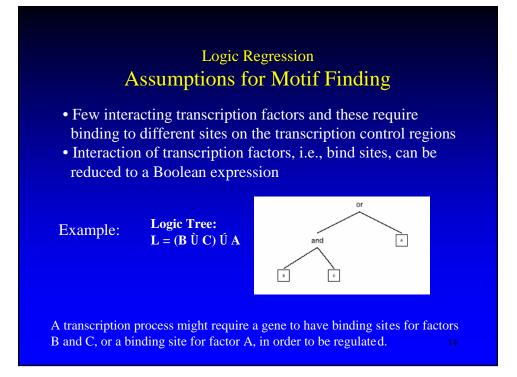

Simple Regression $E[Y | X1] = \beta_0 + \beta_1 X_1$

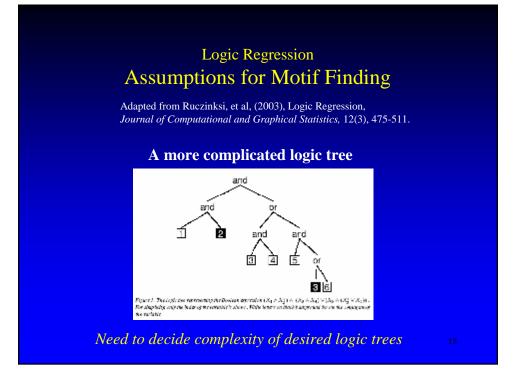
Multiple Regression $E[Y | X1, X2] = \beta_0 + \beta_1 X_1 + \beta_2 X_2$


 $E[Y] = \mu$

Logic Regression: Background Logistic Regression

- Outcome is like flipping a coin (a Bernoulli trial): e.g, binary result: 0 = No, 1 = Yes
- "Predictors" (continuous or discrete) determine how "loaded" coin is
- Want to estimate how much a predictor loads the coin, i.e., changes the probability
- Use "odds" of an event: p/(1-p)
- Log(odds) = Log[p/(1-p)] = logit(p) = "logistic function"
- Preferred by statisticians when dependent variable is binary

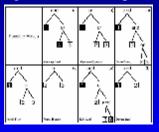



<section-header><section-header><list-item><list-item><list-item><list-item><code-block></code>

Logic 1	Regression Formalities	
• could be binary v	ome of interest" ous quantity, e.g., log ratio mRNA ariable for class of genes, lated gene, 1=upregulated gene	
Assume N indepen distribution.	dent observations of <i>Y</i> from same	
Define vector for e	ach gene n for any given binding	
site set of size <i>M</i> :	$\vec{S}_n = (S_{n,1}, \dots, S_{n,M}),$	
Adapted from Keles (2004), <i>Regulatory motif finding</i> <i>by logic regressions</i>	The entries of this vector are defined as $S_{n,m} = \begin{cases} 1 & \text{if gene } n \text{ has at least one copy of motif } m, \\ 0 & \text{o.w.} \end{cases}$ 12	

Logic Regression Formalities

Extend model to include combinatorial effects, by letting *L* be Boolean expression based on motif scores.

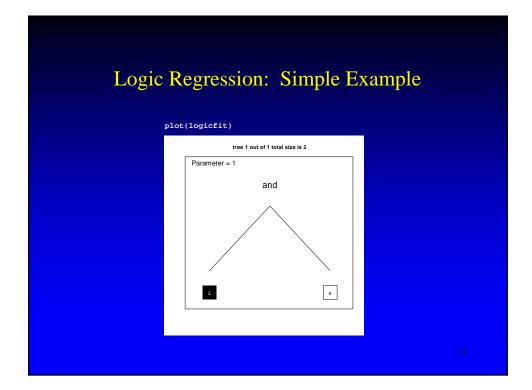

Where L_1 and L_2 are Boolean expressions obtained from vector *S*. Each *L* can be represented by logic tree.

Logic regression identifies combinations of predictors (usually high dimensional) associated with an outcome.

Method works with linear regression, logistic regression, or classification problem.

Logic Regression Formalities

- Ruczinki et al (2003) provide LogicReg "R" package
- Uses simulated annealing algorithm to search high-dimensional space, with well-defined move set:


Adapted from Ruczinksi, et al. (2003), Logic Regression, *Journal of Computational and Graphical Statistics*, 12(3), 475-511.

- Proposed move accepted or rejected based on "score" and "temperature"
- Ruczinksi uses cross-validation and randomization-based hypothesis testing to choose among different model sizes 17

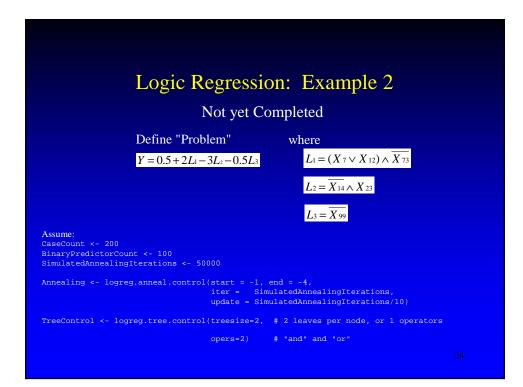
Use Ruczinski's "LogicReg" in R	library(LogicReg)
	<pre>X <- matrix(as.numeric(runif(160) < 0.5), 20,8) colnames(X) <- paste("X", l:ncol(X), sep="") rownames(X) <- paste("case", l:nrow(X), sep="") # Y = (NOT X2) AND X5 Y <- as.numeric(!X[,2] & X[,6]) cbind(Y, X)</pre>
	Y X1 X2 X3 X4 X5 X6 X7 X8 casel 1 0 0 0 0 0 1 1 1
Define Simulated Dataset:	case2 0 0 1 1 1 0 0 1 0
$Y = (NOT X_2) AND X_6$	case3 0 0 1 1 1 0 1 0 0 case4 0 1 1 1 1 1 1 0 0 case5 1 1 0 0 0 1 1 1 0
	case6 0 0 1 1 0 0 0 1 1
	case7 0 0 1 0 0 0 1 1 0 case8 0 0 0 1 0 1 0 0 1
	case9 1 1 0 1 0 1 1 0 0
	case10 0 0 0 0 1 1 0 0 0
	casell 0 0 0 1 0 0 0 0 1
	case12 0 0 1 1 1 0 1 1 0
	casel3 1 1 0 1 1 1 1 0 1
	case14 0 0 1 0 1 0 0 1 0 case15 0 1 0 0 1 0 0 0 0
What kind of regression model	case16 0 1 1 1 1 0 1 0 1
what kind of regression model	case17 0 0 1 1 0 1 1 1 1
is most appropriate here?	case17 0 0 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1
is most appropriate nere:	case19 1 0 0 1 1 0 1 0 0

Logie	Regressi	on Sir	nnle Eve	mole	
\sim	<u> </u>				
earchIterations <- 10					
nnealing <- logreg.an		= -1, end = SearchI			
			terations,		
nnealing	upua	ice - Searchi	Leracions/10)		
start					
1] -1					
end					
1 -4					
iter					
1 1000					
arlyout					
L1 0					
update					
1] 100					
reeControl <- logreg.	tree.control(tree	size=2, # 2	leaves per nod	le, e.g., (X1 OR 2	(2)
	oper	s=2) # "a	and" and "or"		
reeControl					
reesize					
L] 2					
opers					
L] 2					
ninmass					
110					

	ogie itt	egressio	.	SIII	upr		ampi	
logicfit <-	logreg(resp=	Y, bin=X,						
	type	= REGRESSION.T	YPE<-	2,				
		t = FIT.SINGLE	. MODE	L<-1,				
	ntree							
		es=2, # forc l.control=Anne			final	tree		
		control=TreeCc						
		concro1-110000		,				
log-temp cu		best score				/sing	current	parameter
-1.000	0.4894	0.4894		0)			0.350	0.000
-1.300	0.4640	0.3145		10)			0.125	
-1.600	0.3145	0.3145		4)	41		0.077	
-1.900	0.0000	0.0000		4)	95		0.000	1.000
-2.200	0.0000	0.0000	0 (99		0.000	1.000
-2.500	0.0000	0.0000	0 (94		0.000	1.000
-2.800	0.0000	0.0000	0 (92		0.000	1.000
-3.100	0.0000	0.0000	0 (93		0.000	1.000
-3.400	0.0000	0.0000	0 (96	0	0.000	1.000
-3.700	0.0000	0.0000	0(92	0	0.000	1.000
-4.000	0.0000	0.0000	0 (9)	91	0	0.000	1.000
logicfit								
score 0								

Log	ic Regre	ession: Simple Exa	ample
_08	8		
Rut what if other	sets of rand	om values are used that define	the same problem
	sets of randa	m vanes are a sea mai aejine	the same problem
Lleing T	reeControl		
		0 Iterations in Simulated Annealing Chain	
Logic	Fit1Driver(100	0, 20, 100)	
****	**************************************	*******	gounta
11-1		+1 * (X6 and (not X2))"	counts "385"
			"150"
			"135"
			"105"
		+1 * ((not X2) and X6)"	"76"
		+0.824 * (X8 and X4)"	"65"
		+0.667 * (X6 and X8)"	"48"
		+0.667 * (X8 and X6)"	"18"
		-0.545 * ((not X2) and (not X6))	
		+0.778 * ((not X4) and X7)"	"5"
		-0.545 * ((not X6) and (not X2))	" "4"
[12,]	"score 0.408	-0.5 * ((not X6) and (not X7))"	"1"
[13,]	"score 0.408	-0.5 * ((not X7) and (not X6))"	"1"
[14,]	"score 0.416	+0.778 * (X7 and (not X4))"	"1"
[15,]	"score 0.416	+0.778 * (X8 and X1)"	"1"
46.1%	are "correct"		

Logic Regression: Simple Example


How does solution vary by size of dataset and by iterations in simulated annealing chain?

Key:

Number of logic equations (may not be distinct)
% correct
computation time[sec]

Iterations in		Size o	f Dataset	
Simulated Annealing Chain	20	100	1000	10,000
100	15	4	4	5
	46.1%	63.2%	59.0	56.1
	6.3	6.8	13.8	89.6
500	7	4	4	4
	88.9%	95.0%	93.4%	93.7%
	8.0	9.6	31.2	268.4
1,000	5	2	2	3
	98.1%	100.0%	100.0%	99.9%
	9.3	12.6	48.3	480.8
5,000	2	2	2	2
	100.0%	100.0%	100.0%	100.0%
	20.0	35.9	217.8	2167.2
10,000	2	2	2	2
	100.0%	100.0%	100.0%	100.0%
	33.2	64.8	423.2	4244.3

Ruczinksi: In practice use 25,000 iterations or more; 2,500 for a fast run.²³

Lc	ogic Regression: E	xample 2
Expecting	Observed	Comment
not X99	+0 * (not X84) +1 * (not X99)	ОК
0.5 * (not X99)	+0 * (not X84) +0.5 * (not X99)	ок
-0.5 * (not X99)	+1.79e-37 * 1	Error. Cannot use negative coefficients?
0.5 * X99	+0 * (X72 and (not X43)) +0.5 * X99	ОК
(not X14) and X23	+1 * ((not X14) and X23)	ОК
-3 * ((not X14) and X23)	+1.75e-37 * 1	Error. Cannot use negative coefficients?
3 * ((not X14) and X23)	+3 * ((not X14) and X23)	ОК
3 * (X14 or (notX23))	-3 * ((not X14) and X23)	OK (applied DeMorgan's Rule to previous line)

	<u> </u>	ic Regression: E	-
	"Problem" by using pecting	g all positive coefficients and taking " Observed	-1" as negative of the logic expression: Comment
X7 or X12	-1	* ((not X12) and (not X7))	OK (apply DeMorgan's)
(X7 or X12) (not X		775 * (not X73) -0.564 * ((not X7) and (no	(X12)) ?
(not X	73) dify TreeControl: <- logreg.tree	e.control(treesize=4, # 4 le opers=2) # "and	aves per node, or 2 operators " and "or"
(not X	73) dify TreeControl:	≥.control(treesize=4, #4 le	aves per node, or 2 operators

Logic Regression: Take Home Message

- Logic Regression: potentially powerful method to study combinatorial effects likely due to regulatory pathways in a variety of gene studies
- Use of Logic Regression must be explored with problems involving
 - Linear Regression
 - Logistic Regression
 - Classification using Discriminant Analysis
- Need to further explore LogicReg package to understand strengths and limitations