Modeling Credit Card Fraud

Michael Alliston

NUMERACY, LLC VALUE BEYOND THE NUMBERS

NY INFORMS Chapter October 16, 2002

What we will cover today . . .

- Fraud as a payment industry problem
 - How Payments and Fraud work
 - Consequences for modeling
- Common general purpose transaction models
 - Business drivers, pros and cons
- Newer problem specific models
 - "Skimming"
 - "Bust outs"

Fraud is a Big Small Problem

Total Annual credit card losses across major brands approach \$2 Billion

... But this is only

Roughly 8 basis points of all transaction volume

Credit Card Players

- Telecommunications
- Settlement
- Rules
- Administration
- Security

Oct 16, 2002 - NY INFORMS

An **Issuer** bank

sets rates, bills

issues you a card,

©NUMERACY, LLC

An Acquirer bank

sets up merchants

Authorization Transactions

Rules of the Game

- Card Associations "never" deal directly with cardholders or merchants
 - These relationships belong to the issuers and acquirers
- Card Associations have NO personal cardholder information - only account numbers
- Fraud losses are losses to the Issuer, except that . . .
- The Merchant takes the loss if
 - Merchant fails to follow procedure
 - Card not present
 - Merchant has "excessive" fraud

Industry Behaviors

- Fighting Fraud is a business issue, not a moral crusade
 - All players weigh *their* cost /benefits of fraud prevention
- Card Companies fight fraud to protect
 - Brand image and overall consumer confidence in card use
 - Competitive advantages to issuing / accepting their brand
- Players compete and do not readily share information
- Obsession with service levels, consistency, planning
- High systems requirement for coordination among players

Consequently, change is slow

So what is Fraud?

Any attempt to steal by defeating one or more of

- Card Features
- Authorization process
- Merchant procedures or practices
- Acquirer procedures or practices
- Issuer procedures or practices

Fraud happens many ways . . .

Lost or Stolen

- Never Received Card intercepted without reaching the account owner
- Fraudulent Application Card acquired by falsifying a credit application
- Multiple Imprint Same card used multiple times
- Account takeover Criminals effect address changes on valid accounts, receive new cards, and in effect take control of the account

And. . .

Some more ways . . .

- **Counterfeit** Unauthorized plastic made or altered to appear to be a legitimately issued card
- Card Not Present Mail /Telephone/ Internet
- Account Generation Creation of possibly valid account numbers and expiration dates for counterfeit or card not present transactions
- Familiar Fraud Cardholder claims fraud to protect a "close" person
- Credit Abuse Typically not treated as fraud, but as a collection problem
- *Etc.....*

Consequences for Modeling

- Different fraud schemes require different models
 - General purpose transaction models often use subordinate models for specific fraud conditions
 - Rules based systems
 - Neural networks with special features
- Masses of transaction data require high efficiency
- Databases of fraud history exist, but
 - Fraud is reported slowly 30 to 90 days after the event
 - Are transaction based and miss relationships among events
 - Data is incomplete and very dirty
 - Fraud definitions are not MECE, type is often not really known
 - Codes and structure respond very slowly to new fraud schemes

Major Industry Focus has been on General Purpose Transaction Models

Object: Detect fraud transactions in "near real" time

- Rules based "expert" systems
- Neural Networks
 - Profiles of Cardholders and Merchants
- Hybrid of the above
 - Rules to screen for real time scoring by Neural nets
 - Neural Net Scores fed to rules
 - Rules for combining multiple Neural Net scores

False Positive and Detection Rates drive everything

Economic Issues for Transaction Models

- Fraud Detection Rate leads mysteriously to fraud savings
 - Typical 25% to 50% claim
 - What exactly is saved?
 - Average loss per fraud account may be only a few hundred dollars
 - Open to buy the credit left
 - How many fraud transactions does it take to get an alert?
 - What did the bank do with the alerts?

False Positive Rate translates directly into operating costs

- Typical 9:1 to 30:1 some at 5:1 and 100:1
- Every positive consumes human resources in phone calls, letters, account actions

Economic Issues for Transaction Models

- Real time intervention is extremely expensive, and has a big risk of negative customer reaction
 - Embarrassment in a store becomes a favorite story
 - Choosing another card
 - Merchant asking shoppers for a different card
- Near real time detection delays intervention, but avoids most negative reaction
 - But there is a current trend to more aggressive intervention without customer contact

Pros and Cons of Neural Nets and Rule Models

Neural Nets

Rules

Recent Shift to Special Purpose Models

Object: Detect specific fraud patterns in "effective" time

- Models for the Merchant's use include click-stream and other data not available to institutions or associations
 - Purchases grouped by address or phone instead of account
 - Underlying neural nets, rules, or both
- Heuristic Models are good for specific fraud types
 - Skimming
 - Bust outs

New Modeling Environment

- Little or no history data these models address patterns involving more than one transaction
- Requires building a consortium of interested parties willing to share information
 - Only recent data is available
 - Much is anecdotal
 - But, anecdotes reveal what to look for
- Improvement through iterations of user review and model development
- Early wins generate more active consortium interest
 - More data and more insight

Skimming

Defeats all card and process checks Largest growing threat in recent years

Oct 16, 2002 - NY INFORMS

©NUMERACY, LLC

Detecting Skimming: Concept

- Object is to identify the Point of Compromise and shut down the source of the card data to counterfeiters
- For all "current" counterfeit fraud transactions, gather all transactions for a common prior period, sort by merchant, and flag these as pre-fraud
- By merchant, calculate the percentage

Pre-fraud accounts seen at that merchant

All accounts seen at that merchant

Some tweaks and twists apply

Detecting Skimming: Results

- Points of Compromise stick out noticeably
 - False positive rate of 5:1 easily achieved
 - Attempts by individual institutions and smaller consortia get nowhere near these results
 - Large card companies are uniquely positioned to do this kind of analysis because of the wealth of transaction data
- Secondary results assist investigations: Cards with a common POC
 - are often used at a small "ring" of merchants
 - have a tight range of time between compromise and the first fraud

Cardholder Bustout

- A Bustout occurs when a cardholder rapidly spends a set of cards to the limit, pays with bad checks to restore the credit line, spends it all again, and disappears
- An extreme form of deliberate credit abuse
 - Cards are with the real cardholders
 - Cardholder collects a "wallet" of cards
 - May be new, or "nurtured" to achieve high credit limits
 - Easy to run up \$100,000 plus over several banks
- Typical pattern is heavy use of new or previously low-activity accounts

Merchant Bustout

- Cardholder Bustouts focus on high ticket items easily converted to cash
- Some merchants collude in this
 - Merchant may be the cardholder
 - Merchant may be only an account and no merchandise is involved at all
- Typical pattern: All transactions are with a few merchants, and a few transactions on each card
 - Usually more cards than merchants
 - Chains of transactions and accounts link merchants

Detecting Bustouts

- Filter for heavy use of new and recently lowactivity accounts
- Use these to select merchants with a high percentage of sales from these accounts
- Group merchants by activity on these accounts

Some eliminations and tweaks apply

 Results in groups of merchants and to some degree cards that indicate organized rings

Conclusion

Fraud detection modeling is

- Difficult and challenging technically, both from a modeling and computing perspective
- Fraught with organizational and political problems
- Rich and largely unexplored problem territory
- Immense Fun