Prime Number Generating Function ©2003 by Vincent Granville www.datashaping.com

For any positive z, let

$$f(z) = \frac{\pi z}{\sin(\pi z)} \cdot \prod_{k=2}^{\infty} \frac{\sin(\pi z/k)}{\pi z/k}$$

We have

$$f(z) = \frac{1}{1 - z^2} \cdot \prod_{k=2}^{\infty} \left\{ \frac{\sin(\pi z/k)}{\pi z/k} \cdot \frac{1}{1 - z^2/k^2} \right\}$$

Thus

f(z)	=	0 if z is composite
f(z)	\neq	0 if z is prime
f(z+1)	=	0 if z is prime

Now let

$$g(z) = \frac{\{f(z+1)\}^2}{\lambda \{f(z)\}^{2\rho} + \{f(z+1)\}^2}$$

where $\lambda > 0, \rho > 0$ and $\rho \ge \sqrt{2z}$. When both z and z + 1 are composite, both the numerator and denominator vanish. In this case, the above expression for g(z)should be interpreted as a limit. The exponent ρ guarantees that this limit is equal to 1. Note that g(z) is a continuous function for z > 0. Its first derivative exists and is finite except when z is an integer. Finally, we have:

$$g(z) = 0$$
 if z is prime
 $g(z) = 1$ if z is composite
 $g(z) \in]0, 1[$ otherwise

Thus finding all the prime numbers consists of solving g(z) = 0.